RSS

Adding SORD Database (Selected Organic Reactions Database) to ChemSpider

03 Feb

As discussed over on the ChemSpider blog we will soon be depositing data from the SORD databases (Selected Organic Reactions Database) onto ChemSpider. This will be done as two separate but related datasets until the SORD data source: Reactants and Products. If you don’t know what SORD is then who better to explain than Dick Wife, the “host” of the SORD database. Dick wrote the overview article below to provide an overview about what SORD is…ENJOY!

The Selected Organic Reactions (SOR) Database: capturing “Lost Chemistry”

Dick Wife, SORD B.V. The Netherlands (www.sord.nl; dick.wife@sord.nl)

A new database is capturing the 80% of Lost Chemistry from theses and dissertations which doesn’t make it into publications and chemists who contribute their data get access to the entire database for free.

SORD, an independent Dutch company, is carefully selecting the synthetic chemistry focused on Life Science research and making this chemistry available in their Selected Organic Reactions (SOR) Database. For the theses/dissertations which they select, SORD excerpts all of the reactions in the Experimental section are excerpted. This means there will still be a small overlap of data with full publications. There will also be a larger overlap with publications such as Notes, Letters or Communications but these do not contain the experimental details. The SOR Database brings all this chemistry to the desktop, every last detail written by the author.

Some time back, SORD looked at around 300k interesting drug-like compounds in the literature and which countries they had come from, and the native language. The English-speaking countries accounted for only 37% of the total. German/Swiss dissertations are often written in English but this is new. The theses and dissertations in the other languages represent more than half of the total. SORD routinely translates German and French experimental texts into English. They are about to start on Chinese and Japanese translations and, if anyone can give them access to Russian theses, they will translate these as well!

A thesis or dissertation is the result of several years of hard work by a research student under the constant supervision of the research leader whose reputation is at stake if the work described is wrong or inaccurate. It is also examined by a committee who decide on awarding the degree, or not. They scrutinize closely  the Results & Discussion as well as the Experimental sections. The chemistry is reliable.

Advanced Chemistry Development, Inc (ACD/Labs) is partnering SORD in developing this Database. The SOR Database is available for in-house use with ChemFolder Enterprise or on the Internet with ACD/Web Librarian™. This is a screen-shot of a typical SOR Database record in Web Librarian.

 

The Reaction Scheme shows every atom (there are no abbreviations). The Experimental text is edited to ASCII format and the key parameters (Reagent(s), Solvent(s), yield(s), MP(s) and Optical Rotation(s) are displayed in separate Fields, as are the full bibliographic data, making data-mining possible. There is also a link which enables the user to bring up the PDF of each reaction, containing all of the spectral and other physical data which SORD does not excerpt. The PDF link is a powerful and unique feature of the SOR Database.

Now some explanation about SORD’s excerption rules. What they call the Reaction Scheme (A + B à C, etc.) contains only the reacting and product compound structures. A Reagent is an essential reaction component of which no part ends up in the product – if it does, it becomes a Reactant! When several reactions are performed before the product is isolated (and characterized) the Reagents and Solvents are listed in Steps. Failed reactions are not excerpted but reactions with poor yields are.

The SOR Database currently contains 170k reactions; the target is one million at the end of 2013. Even this number is a lot smaller than what you find today in the major commercial reaction databases. Back in the nineties, SORD researchers looked at one such large commercial database which then contained 9 million compounds. Sifting through the content for drug-like compounds resulted in just 450k or 5% of the records[1]. Size is one database metric; quality is much more important! In the SOR Database, you will only find characterized products – and no polymers, or compounds with no molecular structure.

Users of the SOR Database also have access to the separate databases which contain the Reagents (ca. 3,000) and Solvents (ca. 450) which have been encountered so far. Often a Reagent is a catalyst (organic/organometallic) but they can also be simple entities like bases, acids, ammonium salts, etc. or complex chiral ligands. Authors give Reagents many different names and so each Reagent (and Solvent) in the SOR Database has been assigned a unique name. This enables rapid searches using the assigned names, again a novel feature of the database. Such searches can bring you to really nice chemistry.

As an Example, the second generation Grubbs olefin metathesis catalyst has been given the name Grubbs 2 catalyst. In the current SOR Database, there are more than 500 reactions where it has been used. Some of these are straightforward; some are not and generate novel ring systems like this one from the Martin group at North Carolina at Chapel Hill:

Searches in the Reactions Scheme, or using Reagent/Solvent names and hit refinement brings you to new chemistry which until now was only found on a dusty shelf in a library. The “Lost Chemistry” is now getting smaller as SORD carefully selects and excerpts the reactions which deserve a new life. The SOR Database is essential for novelty searches and it is a powerful supplement for the other commercial reaction databases.

Finally some more good news for academic research chemists; your data will be readily accessible to the whole chemical world who will cite your work in their publications. The chemistry which you never published may be just what others are looking for. Routinely SORD excerpts the complete collection of theses and dissertations from research supervisors; they will be more than happy to see your work appear in the next SOR Database!


[1] de Laet, A.; Hehenkamp, J. J.; Wife, R. L. Finding Drug Candidates in Lost/Emerging Chemistry. J. Heterocycl. Chem. 2000, 37, 669–674.

 

About tony

Antony (Tony) J. Williams received his BSc in 1985 from the University of Liverpool (UK) and PhD in 1988 from the University of London (UK). His PhD research interests were in studying the effects of high pressure on molecular motions within lubricant related systems using Nuclear Magnetic Resonance. He moved to Ottawa, Canada to work for the National Research Council performing fundamental research on the electron paramagnetic resonance of radicals trapped in single crystals. Following his postdoctoral position he became the NMR Facility Manager for Ottawa University. Tony joined the Eastman Kodak Company in Rochester, New York as their NMR Technology Leader. He led the laboratory to develop quality control across multiple spectroscopy labs and helped establish walk-up laboratories providing NMR, LC-MS and other forms of spectroscopy to hundreds of chemists across multiple sites. This included the delivery of spectroscopic data to the desktop, automated processing and his initial interests in computer-assisted structure elucidation (CASE) systems. He also worked with a team to develop the worlds’ first web-based LIMS system, WIMS, capable of allowing chemical structure searching and spectral display. With his developing cheminformatic skills and passion for data management he left corporate America to join a small start-up company working out of Toronto, Canada. He joined ACD/Labs as their NMR Product Manager and various roles, including Chief Science Officer, during his 10 years with the company. His responsibilities included managing over 50 products at one time prior to developing a product management team, managing sales, marketing, technical support and technical services. ACD/Labs was one of Canada’s Fast 50 Tech Companies, and Forbes Fast 500 companies in 2001. His primary passions during his tenure with ACD/Labs was the continued adoption of web-based technologies and developing automated structure verification and elucidation platforms. While at ACD/Labs he suggested the possibility of developing a public resource for chemists attempting to integrate internet available chemical data. He finally pursued this vision with some close friends as a hobby project in the evenings and the result was the ChemSpider database (www.chemspider.com). Even while running out of a basement on hand built servers the website developed a large community following that eventually culminated in the acquisition of the website by the Royal Society of Chemistry (RSC) based in Cambridge, United Kingdom. Tony joined the organization, together with some of the other ChemSpider team, and became their Vice President of Strategic Development. At RSC he continued to develop cheminformatics tools, specifically ChemSpider, and was the technical lead for the chemistry aspects of the Open PHACTS project (http://www.openphacts.org), a project focused on the delivery of open data, open source and open systems to support the pharmaceutical sciences. He was also the technical lead for the UK National Chemical Database Service (http://cds.rsc.org/) and the RSC lead for the PharmaSea project (http://www.pharma-sea.eu/) attempting to identify novel natural products from the ocean. He left RSC in 2015 to become a Computational Chemist in the National Center of Computational Toxicology at the Environmental Protection Agency where he is bringing his skills to bear working with a team on the delivery of a new software architecture for the management and delivery of data, algorithms and visualization tools. The “Chemistry Dashboard” was released on April 1st, no fooling, at https://comptox.epa.gov, and provides access to over 700,000 chemicals, experimental and predicted properties and a developing link network to support the environmental sciences. Tony remains passionate about computer-assisted structure elucidation and verification approaches and continues to publish in this area. He is also passionate about teaching scientists to benefit from the developing array of social networking tools for scientists and is known as the ChemConnector on the networks. Over the years he has had adjunct roles at a number of institutions and presently enjoys working with scientists at both UNC Chapel Hill and NC State University. He is widely published with over 200 papers and book chapters and was the recipient of the Jim Gray Award for eScience in 2012. In 2016 he was awarded the North Carolina ACS Distinguished Speaker Award.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

 
Stop SOPA