Adding SORD Database (Selected Organic Reactions Database) to ChemSpider


As discussed over on the ChemSpider blog we will soon be depositing data from the SORD databases (Selected Organic Reactions Database) onto ChemSpider. This will be done as two separate but related datasets until the SORD data source: Reactants and Products. If you don’t know what SORD is then who better to explain than Dick Wife, the “host” of the SORD database. Dick wrote the overview article below to provide an overview about what SORD is…ENJOY!

The Selected Organic Reactions (SOR) Database: capturing “Lost Chemistry”

Dick Wife, SORD B.V. The Netherlands (www.sord.nl; dick.wife@sord.nl)

A new database is capturing the 80% of Lost Chemistry from theses and dissertations which doesn’t make it into publications and chemists who contribute their data get access to the entire database for free.

SORD, an independent Dutch company, is carefully selecting the synthetic chemistry focused on Life Science research and making this chemistry available in their Selected Organic Reactions (SOR) Database. For the theses/dissertations which they select, SORD excerpts all of the reactions in the Experimental section are excerpted. This means there will still be a small overlap of data with full publications. There will also be a larger overlap with publications such as Notes, Letters or Communications but these do not contain the experimental details. The SOR Database brings all this chemistry to the desktop, every last detail written by the author.

Some time back, SORD looked at around 300k interesting drug-like compounds in the literature and which countries they had come from, and the native language. The English-speaking countries accounted for only 37% of the total. German/Swiss dissertations are often written in English but this is new. The theses and dissertations in the other languages represent more than half of the total. SORD routinely translates German and French experimental texts into English. They are about to start on Chinese and Japanese translations and, if anyone can give them access to Russian theses, they will translate these as well!

A thesis or dissertation is the result of several years of hard work by a research student under the constant supervision of the research leader whose reputation is at stake if the work described is wrong or inaccurate. It is also examined by a committee who decide on awarding the degree, or not. They scrutinize closely  the Results & Discussion as well as the Experimental sections. The chemistry is reliable.

Advanced Chemistry Development, Inc (ACD/Labs) is partnering SORD in developing this Database. The SOR Database is available for in-house use with ChemFolder Enterprise or on the Internet with ACD/Web Librarian™. This is a screen-shot of a typical SOR Database record in Web Librarian.

 

The Reaction Scheme shows every atom (there are no abbreviations). The Experimental text is edited to ASCII format and the key parameters (Reagent(s), Solvent(s), yield(s), MP(s) and Optical Rotation(s) are displayed in separate Fields, as are the full bibliographic data, making data-mining possible. There is also a link which enables the user to bring up the PDF of each reaction, containing all of the spectral and other physical data which SORD does not excerpt. The PDF link is a powerful and unique feature of the SOR Database.

Now some explanation about SORD’s excerption rules. What they call the Reaction Scheme (A + B à C, etc.) contains only the reacting and product compound structures. A Reagent is an essential reaction component of which no part ends up in the product – if it does, it becomes a Reactant! When several reactions are performed before the product is isolated (and characterized) the Reagents and Solvents are listed in Steps. Failed reactions are not excerpted but reactions with poor yields are.

The SOR Database currently contains 170k reactions; the target is one million at the end of 2013. Even this number is a lot smaller than what you find today in the major commercial reaction databases. Back in the nineties, SORD researchers looked at one such large commercial database which then contained 9 million compounds. Sifting through the content for drug-like compounds resulted in just 450k or 5% of the records[1]. Size is one database metric; quality is much more important! In the SOR Database, you will only find characterized products – and no polymers, or compounds with no molecular structure.

Users of the SOR Database also have access to the separate databases which contain the Reagents (ca. 3,000) and Solvents (ca. 450) which have been encountered so far. Often a Reagent is a catalyst (organic/organometallic) but they can also be simple entities like bases, acids, ammonium salts, etc. or complex chiral ligands. Authors give Reagents many different names and so each Reagent (and Solvent) in the SOR Database has been assigned a unique name. This enables rapid searches using the assigned names, again a novel feature of the database. Such searches can bring you to really nice chemistry.

As an Example, the second generation Grubbs olefin metathesis catalyst has been given the name Grubbs 2 catalyst. In the current SOR Database, there are more than 500 reactions where it has been used. Some of these are straightforward; some are not and generate novel ring systems like this one from the Martin group at North Carolina at Chapel Hill:

Searches in the Reactions Scheme, or using Reagent/Solvent names and hit refinement brings you to new chemistry which until now was only found on a dusty shelf in a library. The “Lost Chemistry” is now getting smaller as SORD carefully selects and excerpts the reactions which deserve a new life. The SOR Database is essential for novelty searches and it is a powerful supplement for the other commercial reaction databases.

Finally some more good news for academic research chemists; your data will be readily accessible to the whole chemical world who will cite your work in their publications. The chemistry which you never published may be just what others are looking for. Routinely SORD excerpts the complete collection of theses and dissertations from research supervisors; they will be more than happy to see your work appear in the next SOR Database!


[1] de Laet, A.; Hehenkamp, J. J.; Wife, R. L. Finding Drug Candidates in Lost/Emerging Chemistry. J. Heterocycl. Chem. 2000, 37, 669–674.

  1. No comments yet.
(will not be published)