RSS

In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning

19 Feb

Recently we published on the curation of physicochemical data sets that were then made available as Open Data. The work was reported in:

“An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modeling, SAR and QSAR in Environmental Research, K. Mansouri, C.Grulke, R. Judson and A.J. Williams, SAR and QSAR in Environmental Research,Volume 27 2016 – Issue 11, Pages 911-937 http://dx.doi.org/10.1080/1062936X.2016.1253611

The data has since been modeled using an alternative approach to that we used and is now reported in http://dx.doi.org/10.1021/acs.jcim.6b00625.

 

“In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning, Q. Zang, K. Mansouri, A.J. Williams, R.S. Judson, D.G. Allen, W.M. Casey, and N.C. Kleinstreuer, J. Chem. Inf. Model., 2017, 57 (1), pp 36–49″

The abstract for the article is below

ABSTRACT

There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure–property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol–water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.

 

About tony

Antony (Tony) J. Williams received his BSc in 1985 from the University of Liverpool (UK) and PhD in 1988 from the University of London (UK). His PhD research interests were in studying the effects of high pressure on molecular motions within lubricant related systems using Nuclear Magnetic Resonance. He moved to Ottawa, Canada to work for the National Research Council performing fundamental research on the electron paramagnetic resonance of radicals trapped in single crystals. Following his postdoctoral position he became the NMR Facility Manager for Ottawa University. Tony joined the Eastman Kodak Company in Rochester, New York as their NMR Technology Leader. He led the laboratory to develop quality control across multiple spectroscopy labs and helped establish walk-up laboratories providing NMR, LC-MS and other forms of spectroscopy to hundreds of chemists across multiple sites. This included the delivery of spectroscopic data to the desktop, automated processing and his initial interests in computer-assisted structure elucidation (CASE) systems. He also worked with a team to develop the worlds’ first web-based LIMS system, WIMS, capable of allowing chemical structure searching and spectral display. With his developing cheminformatic skills and passion for data management he left corporate America to join a small start-up company working out of Toronto, Canada. He joined ACD/Labs as their NMR Product Manager and various roles, including Chief Science Officer, during his 10 years with the company. His responsibilities included managing over 50 products at one time prior to developing a product management team, managing sales, marketing, technical support and technical services. ACD/Labs was one of Canada’s Fast 50 Tech Companies, and Forbes Fast 500 companies in 2001. His primary passions during his tenure with ACD/Labs was the continued adoption of web-based technologies and developing automated structure verification and elucidation platforms. While at ACD/Labs he suggested the possibility of developing a public resource for chemists attempting to integrate internet available chemical data. He finally pursued this vision with some close friends as a hobby project in the evenings and the result was the ChemSpider database (www.chemspider.com). Even while running out of a basement on hand built servers the website developed a large community following that eventually culminated in the acquisition of the website by the Royal Society of Chemistry (RSC) based in Cambridge, United Kingdom. Tony joined the organization, together with some of the other ChemSpider team, and became their Vice President of Strategic Development. At RSC he continued to develop cheminformatics tools, specifically ChemSpider, and was the technical lead for the chemistry aspects of the Open PHACTS project (http://www.openphacts.org), a project focused on the delivery of open data, open source and open systems to support the pharmaceutical sciences. He was also the technical lead for the UK National Chemical Database Service (http://cds.rsc.org/) and the RSC lead for the PharmaSea project (http://www.pharma-sea.eu/) attempting to identify novel natural products from the ocean. He left RSC in 2015 to become a Computational Chemist in the National Center of Computational Toxicology at the Environmental Protection Agency where he is bringing his skills to bear working with a team on the delivery of a new software architecture for the management and delivery of data, algorithms and visualization tools. The “Chemistry Dashboard” was released on April 1st, no fooling, at https://comptox.epa.gov, and provides access to over 700,000 chemicals, experimental and predicted properties and a developing link network to support the environmental sciences. Tony remains passionate about computer-assisted structure elucidation and verification approaches and continues to publish in this area. He is also passionate about teaching scientists to benefit from the developing array of social networking tools for scientists and is known as the ChemConnector on the networks. Over the years he has had adjunct roles at a number of institutions and presently enjoys working with scientists at both UNC Chapel Hill and NC State University. He is widely published with over 200 papers and book chapters and was the recipient of the Jim Gray Award for eScience in 2012. In 2016 he was awarded the North Carolina ACS Distinguished Speaker Award.
Leave a comment

Posted by on February 19, 2017 in Publications and Presentations

 

Tags:

Leave a Reply

Your email address will not be published. Required fields are marked *