Archive for category CompTox dashboard

Comparing the EPA CompTox Dashboard with ChemSpider for MS-based Structure Identification

It’s almost ten years, this April, since ChemSpider was released to the public at the 233rd ACS meeting in Chicago. For two years, prior to being acquired by RSC in May 2009, we worked very closely with a number of mass spectrometry vendors including Waters (Micromass), Thermo and Agilent. I always considered that the work that we did with ChemSpider could be highly valued by the mass spectrometry community. This was especially true after we published the work for the identification of known unknowns with James Little (http://link.springer.com/article/10.1007/s13361-011-0265-y)  Certainly ChemSpider has become highly recognized, and used, by an increasing number of mass spectrometry vendors (through the ChemSpider Web Services).

A few months ago Andrew McEachran joined our team as a postdoc. Combining my experience with bringing ChemSpider to bear for the purpose of structure identification, his mass spectrometry skills and experience, and our tremendous development team to the development of the CompTox Chemistry Dashboard, we were able to make some further advances in the “identification known unknowns”. Our efforts were recently reported in this publication “Identifying known unknowns using the US EPA’s CompTox Chemistry Dashboard” (http://link.springer.com/article/10.1007%2Fs00216-016-0139-z). Readers are pointed to the summary tables in the article (results) demonstrating the improved performance of the CompTox Chemistry Dashboard based on high quality data sources and new approaches to rank ordering results based on formula and mass searching.

We recently rolled out new functionality and “MS-Ready structure batch-based searching” to offer even greater support for MS-structure identification . We will report on further extensions to this work at the Spring ACS Meeting.

 
The AltMetrics for the Article are shown below

No Comments

The EPA iCSS Chemistry Dashboard to Support Compound Identification Using High Resolution Mass Spectrometry Data

Presentation given at ACS Meeting in Philadelphia in August 2016

The EPA iCSS Chemistry Dashboard to Support Compound Identification Using High Resolution Mass Spectrometry Data

There is a growing need for rapid chemical screening and prioritization to inform regulatory decision-making on thousands of chemicals in the environment. We have previously used high-resolution mass spectrometry to examine household vacuum dust samples using liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS). Using a combination of exact mass, isotope distribution, and isotope spacing, molecular features were matched with a list of chemical formulas from the EPA’s Distributed Structure-Searchable Toxicity (DSSTox) database. This has further developed our understanding of how openly available chemical databases, together with the appropriate searches, could be used for the purpose of compound identification. We report here on the utility of the EPA’s iCSS Chemistry Dashboard for the purpose of compound identification using searches against a database of over 720,000 chemicals. We also examine the benefits of QSAR prediction for the purpose of retention time prediction to allow for alignment of both chromatographic and mass spectral properties. This abstract does not reflect U.S. EPA policy.

THis work is relevant to the article: “Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring” DOI: http://dx.doi.org/10.1016/j.envint.2015.12.008

No Comments

The EPA Online Prediction Physicochemical Prediction Platform to Support Environmental Scientists

This poster was presented at the American Chemical Society in Philadelphia in August 2016 at the Sci-Mix gathering and at the ENVR section on Wednesday.

SESSION: Sci-Mix
SESSION TIME:
August 22, 2016 from 8:00 PM to 10:00 PM

and

SESSION TIME: Wednesday, August, 24, 2016, 6:00 PM – 8:00 PM
ROOM & LOCATION:
Hall D – Pennsylvania Convention Center

Poster Title: The EPA Online Prediction Physicochemical Prediction Platform to Support Environmental Scientists

As part of our efforts to develop a public platform to provide access to predictive models we have attempted to disentangle the influence of the quality versus quantity of data available to develop and validate QSAR models.  Using a thorough manual review of the data underlying the well-known EPI Suite software, we developed automated processes for the validation of the data using a KNIME workflow. This includes: approaches to validate different chemical structure representations (e.g. molfile and SMILES), identifiers (chemical names and registry numbers), and methods to standardize the data into QSAR-consumable formats for modeling. Our efforts to quantify and segregate data into various quality categories has allowed us to thoroughly investigate the resulting models developed from these data slices, as well as allowing us to examine whether or not efforts into the development of large high-quality datasets has the expected pay-off in terms of prediction performance. Machine-learning approaches have been applied to create a series of models that have been used to generate predicted physicochemical and environmental parameters for over 700,000 chemicals. These data are available online via the EPA’s iCSS Chemistry Dashboard. This abstract does not reflect U.S. EPA policy.

No Comments

Structure Identification Using High Resolution Mass Spectrometry Data and the EPA’s Chemistry Dashboard

This presentation was presented at the American Chemical Society in Philadelphia in August 2016

DAY & TIME OF PRESENTATION: Sunday, August, 21, 2016 from 1:10 PM – 1:35 PM
ROOM & LOCATION: Room 105A – Pennsylvania Convention Center

Title: Structure Identification Using High Resolution Mass Spectrometry Data and the EPA’s Chemistry Dashboard

The iCSS Chemistry Dashboard is a publicly accessible dashboard provided by the National Center for Computation Toxicology at the US-EPA. It serves a number of purposes, including providing a chemistry database underpinning many of our public-facing projects (e.g. ToxCast and ExpoCast). The available data and searches provide a valuable path to structure identification using mass spectrometry as the source data. With an underlying database of over 720,000 chemicals, the dashboard has already been used to assist in identifying chemicals present in house dust. However, it can also be applied to many other purposes, e.g., the identification of agrochemicals in waste streams. This presentation will provide a review of the EPA’s platform and underlying algorithms used for the purpose of compound identification using high-resolution mass spectrometry data. We will also discuss progress towards a high-throughput non-targeted analysis platform for use by the mass spectrometry community.  This abstract does not reflect U.S. EPA policy.

 

No Comments

Presentations and Posters at #ACSPhiladelphia August 2016

I will be delivering five presentations and a poster (twice) at the ACS Meeting in Philadelphia this week. These presentations will introduce the latest version of our CompTox Dashboard, renamed from the iCSS Chemistry Dashboard because now we are offering way more than just a large set of chemical structures! I look forward to introducing attendees to the latest and greatest.

DAY & TIME OF PRESENTATION: Sunday, August, 21, 2016 from 1:10 PM – 1:35 PM
ROOM & LOCATION: Room 105A – Pennsylvania Convention Center

Title: Structure Identification Using High Resolution Mass Spectrometry Data and the EPA’s Chemistry Dashboard

The iCSS Chemistry Dashboard is a publicly accessible dashboard provided by the National Center for Computation Toxicology at the US-EPA. It serves a number of purposes, including providing a chemistry database underpinning many of our public-facing projects (e.g. ToxCast and ExpoCast). The available data and searches provide a valuable path to structure identification using mass spectrometry as the source data. With an underlying database of over 720,000 chemicals, the dashboard has already been used to assist in identifying chemicals present in house dust. However, it can also be applied to many other purposes, e.g., the identification of agrochemicals in waste streams. This presentation will provide a review of the EPA’s platform and underlying algorithms used for the purpose of compound identification using high-resolution mass spectrometry data. We will also discuss progress towards a high-throughput non-targeted analysis platform for use by the mass spectrometry community.  This abstract does not reflect U.S. EPA policy.

 

DAY & TIME OF PRESENTATION: Sunday, August, 21, 2016 from 4:10 PM – 4:30 PM
ROOM & LOCATION: Room 112B – Pennsylvania Convention Center

Title: Investigating Impact Metrics for Performance for the US-EPA National Center for Computational Toxicology

The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data driven approaches that integrate chemistry, exposure and biological data. We have delivered public access to terabytes of open data, as well to a large number of publicly accessible databases and applications, to support the research efforts for a large community of scientists. Many of our contributions to science are summarily described in research papers but  to date we have not optimized our contributions to  inform altmetrics statistics associated with our work. Critically missing from altmetrics is access to our numerous software applications and web service accesses, as well as the growing importance of our experimental data and models (e.g ToxCast, ExpoCast, DSSTox and others) to the scientific and regulatory communities.  This presentation will provide an overview of our efforts to more fully understand, and quantify, our impact on the environmental sciences using a combination of our measurement approaches and available altmetrics tools. This abstract does not reflect U.S. EPA policy.

DAY & TIME OF PRESENTATION: Wednesday, August, 24, 2016 from 9:40 AM – 10:00 AM
ROOM & LOCATION:
Juniper’s Ballroom – Philadelphia Downtown Courtyard by Marriott

Title: Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA

Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intention of this research program is to quickly evaluate thousands of chemicals for potential risk but with much reduced cost relative to historical approaches. This work involves computational and data driven approaches including high-throughput screening, modeling, text-mining and the integration of chemistry, exposure and biological data. We have developed a number of databases and applications that are delivering on the vision of developing a deeper understanding of chemicals and their effects on exposure and biological processes that are supporting a large community of scientists in their research efforts. This presentation will provide an overview of our work to bring together diverse large scale data from the chemical and biological domains, our approaches to integrate and disseminate these data, and the delivery of models supporting computational toxicology. This abstract does not reflect U.S. EPA policy.

 

DAY & TIME OF PRESENTATION: Wednesday, August, 24, 2016 from 11:10 AM – 11:40 AM
ROOM & LOCATION: Ormandy East – DoubleTree by Hilton Hotel Philadelphia Center City

Title: Data Aggregation, Curation and Modeling Approaches to Deliver Prediction Models to Support Computational Toxicology at the EPA

The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program develops and utilizes QSAR modeling approaches across a broad range of applications. In terms of physical chemistry we have a particular interest in the prediction of basic physicochemical parameters such as logP, aqueous solubility, vapor pressure and other parameters to invoke in our exposure models or for the purpose of modeling environmental toxicity. We are also interested in the development of models related to environmental fate. As a result of our efforts we have assembled and curated data sets for various physicochemical properties and, utilizing modern machine-learning modeling approaches, have developed a number of high performing models that we are now delivering to the public. Our website, the iCSS Chemistry Dashboard, provides access to data predicted for over 700,000 chemical compounds. The original training data are available for review and the details of prediction for each endpoint include the domain of applicability as well as a measure of performance accuracy.  This presentation will provide an overview of the existing aggregated data, our approaches to data curation and our progress towards an interactive environment for prediction of physicochemical and environmental fate parameters. The utilization of these parameters to support read-across approaches will also be discussed. This abstract does not reflect U.S. EPA policy.

 

DAY & TIME OF PRESENTATION: Thursday, August, 25, 2016 from 3:00 PM – 3:20 PM
ROOM & LOCATION:: Room 104A – Pennsylvania Convention Center

Title: The EPA iCSS Chemistry Dashboard to Support Compound Identification Using High Resolution Mass Spectrometry Data

There is a growing need for rapid chemical screening and prioritization to inform regulatory decision-making on thousands of chemicals in the environment. We have previously used high-resolution mass spectrometry to examine household vacuum dust samples using liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS). Using a combination of exact mass, isotope distribution, and isotope spacing, molecular features were matched with a list of chemical formulas from the EPA’s Distributed Structure-Searchable Toxicity (DSSTox) database. This has further developed our understanding of how openly available chemical databases, together with the appropriate searches, could be used for the purpose of compound identification. We report here on the utility of the EPA’s iCSS Chemistry Dashboard for the purpose of compound identification using searches against a database of over 720,000 chemicals. We also examine the benefits of QSAR prediction for the purpose of retention time prediction to allow for alignment of both chromatographic and mass spectral properties. This abstract does not reflect U.S. EPA policy.

 

SESSION: Sci-Mix
SESSION TIME:
August 22, 2016 from 8:00 PM to 10:00 PM

and

SESSION TIME: Wednesday, August, 24, 2016, 6:00 PM – 8:00 PM
ROOM & LOCATION:
Hall D – Pennsylvania Convention Center

Poster Title: The EPA Online Prediction Physicochemical Prediction Platform to Support Environmental Scientists

As part of our efforts to develop a public platform to provide access to predictive models we have attempted to disentangle the influence of the quality versus quantity of data available to develop and validate QSAR models.  Using a thorough manual review of the data underlying the well-known EPI Suite software, we developed automated processes for the validation of the data using a KNIME workflow. This includes: approaches to validate different chemical structure representations (e.g. molfile and SMILES), identifiers (chemical names and registry numbers), and methods to standardize the data into QSAR-consumable formats for modeling. Our efforts to quantify and segregate data into various quality categories has allowed us to thoroughly investigate the resulting models developed from these data slices, as well as allowing us to examine whether or not efforts into the development of large high-quality datasets has the expected pay-off in terms of prediction performance. Machine-learning approaches have been applied to create a series of models that have been used to generate predicted physicochemical and environmental parameters for over 700,000 chemicals. These data are available online via the EPA’s iCSS Chemistry Dashboard. This abstract does not reflect U.S. EPA policy.

 

No Comments

%d bloggers like this: