Category Archives: Division of Chemical Information

Spring ACS Meeting San Francisco, April 2017

The Spring ACS Meeting is coming, and it’s coming quickly. Every time the New Year starts I think I have a long time before I have to assemble posters and write talks for the ACS Meeting. When I worked at the RSC it was easier in some ways as NO ONE reviewed them, no one gave comments on them and there was no clearance process involved. Mostly I was writing the talks on the flight out to the ACS or, more commonly, was writing them the evening before or morning of the presentations. There have been days when I got up in the morning at 4am to write two talks on the day I presented. Quite exhausting but at least I got to show the latest and greatest capabilities.

As an employee at the EPA there are different expectations especially in regards to the clearance process where the presentations are reviewed and signed off, pushed through our internal repository and, post-presentation, released to the community via Science Inventory. Some, not all, of the presentations and papers I have been involved with since joining EPA, are here.

I will be going to the ACS meeting with a number of colleagues and chairing a session on Thursday, all day, with Chris Grulke for the Division of Environmental Chemistry. I will be presenting a number of posters and presentations as listed below. A number of my colleagues will also be presenting. Andrew McEachran, a recent postdoc with the center will be presenting on a lot of the work that has been done in terms of the use of the Chemistry Dashboard to facilitate structure identification. The recent publication “Identifying known unknowns using the US EPA’s CompTox Chemistry Dashboard” ( reported on a comparison of the dashboard versus ChemSpider. Since then we have rolled out a lot of new functionality to support structure identification and Andrew will report on that.

PAPER ID: 2624963
PAPER TITLE: Twenty five years in cheminformatics: A career path through a diverse series of roles and responsibilities

DIVISION: Division of Chemical Information
SESSION: Careers in Chemical Information
DAY & HALF DAY OF PRESENTATION: Sunday, April, 02, 2017 – AM

PAPER ID: 2616719
PAPER TITLE: Evaluating suspect screening and non-targeted analysis approaches using a collaborative research trial at the US EPA

DIVISION: Division of Analytical Chemistry
SESSION: Analytical Division Poster Session
DAY & HALF DAY OF PRESENTATION: Sunday, April, 02, 2017 – EVE

PAPER ID: 2624980
PAPER TITLE: EPA CompTox chemistry dashboard: An online resource for environmental chemists

DIVISION: Division of Chemical Health and Safety
SESSION: Information Flow in Environmental Health & Safety
DAY & HALF DAY OF PRESENTATION: Tuesday, April, 04, 2017 – PM
PAPER ID: 2624984
PAPER TITLE: Delivering an informational hub for data at the National Center for Computational Toxicology

DIVISION: Division of Environmental Chemistry
SESSION: Applications of Cheminformatics & Computational Chemistry in Environmental Health
DAY & HALF DAY OF PRESENTATION: Wednesday, April, 05, 2017 – EVE

Looking forward to seeing you at ACS!



PRESENTATION: Building an Online Profile Using Social Networking and Amplification Tools for Scientists

This presentation was given as a 2 hour hands-on training course at the Frontier Building in the Research Triangle Park in NC funded by an Industry Award Grant from the ACS and matching financial support from the Research Triangle Institute.

Abstract “Many of us nowadays invest significant amounts of time in sharing our activities and opinions with friends and family via social networking tools such as Facebook, Twitter or other related websites. However, despite the availability of many platforms for scientists to connect and share with their peers in the scientific community the majority do not make use of these tools, despite their promise and potential impact and influence on our careers. We are already being indexed and exposed on the internet via our publications, presentations and data and new “AltMetric scores” are being assigned to scientific publications as measures of popularity and, supposedly, of impact. We now have even more ways to contribute to science, to annotate and curate data, to “publish” in new ways, and many of these activities are as part of a growing crowdsourcing network. This presentation provides an overview of the various types of networking and collaborative sites available to scientists and ways to expose your scientific activities online. It will discuss the new world of AltMetrics that is in an explosive growth curve and will help you understand how to influence and leverage some of these new measures. Participating online, whether it be simply for career advancement or for wider exposure of your research, there are now a series of web applications that can provide a great opportunity to develop a scientific profile within the community.”



The EPA iCSS Chemistry Dashboard to Support Compound Identification Using High Resolution Mass Spectrometry Data

Presentation given at ACS Meeting in Philadelphia in August 2016

The EPA iCSS Chemistry Dashboard to Support Compound Identification Using High Resolution Mass Spectrometry Data

There is a growing need for rapid chemical screening and prioritization to inform regulatory decision-making on thousands of chemicals in the environment. We have previously used high-resolution mass spectrometry to examine household vacuum dust samples using liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS). Using a combination of exact mass, isotope distribution, and isotope spacing, molecular features were matched with a list of chemical formulas from the EPA’s Distributed Structure-Searchable Toxicity (DSSTox) database. This has further developed our understanding of how openly available chemical databases, together with the appropriate searches, could be used for the purpose of compound identification. We report here on the utility of the EPA’s iCSS Chemistry Dashboard for the purpose of compound identification using searches against a database of over 720,000 chemicals. We also examine the benefits of QSAR prediction for the purpose of retention time prediction to allow for alignment of both chromatographic and mass spectral properties. This abstract does not reflect U.S. EPA policy.

THis work is relevant to the article: “Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring” DOI:

Investigating Impact Metrics for Performance for the US-EPA National Center for Computational Toxicology

This presentation was presented at the American Chemical Society in Philadelphia in August 2016

DAY & TIME OF PRESENTATION: Sunday, August, 21, 2016 from 4:10 PM – 4:30 PM
ROOM & LOCATION: Room 112B – Pennsylvania Convention Center

Title: Investigating Impact Metrics for Performance for the US-EPA National Center for Computational Toxicology

The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data driven approaches that integrate chemistry, exposure and biological data. We have delivered public access to terabytes of open data, as well to a large number of publicly accessible databases and applications, to support the research efforts for a large community of scientists. Many of our contributions to science are summarily described in research papers but  to date we have not optimized our contributions to  inform altmetrics statistics associated with our work. Critically missing from altmetrics is access to our numerous software applications and web service accesses, as well as the growing importance of our experimental data and models (e.g ToxCast, ExpoCast, DSSTox and others) to the scientific and regulatory communities.  This presentation will provide an overview of our efforts to more fully understand, and quantify, our impact on the environmental sciences using a combination of our measurement approaches and available altmetrics tools. This abstract does not reflect U.S. EPA policy.



Our dire need to mandate data standards and expectations for scientific publishing

This is a presentation that I delivered at the ACS Division of Chemical Information meeting regarding “Reproducibility, Reporting, Sharing & Plagiarism” at ACS Denver on 23rd March 2015.

I took the opportunity to remove my hat that has me be the VP of Strategic Development at RSC, and a member of the cheminformatics group that built ChemSpider and works on other RSC projects related to it. Instead I presented on how a LACK OF MANDATES from publishers on me in terms of submission of data accompanying articles I am involved with writing is actually weakening my scientific record as data is not getting shared in the most useful forms possible to the benefit of the community. I think there would be benefits for publishers to start pushing me for MORE data, in fairly general standards, and allowing me (and others) to download the data in the form of molecules (and collections), spectral data, CSV files etc.



Using an online database of chemical compounds for the purpose of structure identification #ACSsanfran

Using an online database of chemical compounds for the purpose of structure identification

Online databases can be used for the purposes of structure identification. The Royal Society of Chemistry provides access to an online database containing tens of millions of compounds and this has been shown to be a very effective platform for the development of tools for structure identification. Since in many cases an unknown to an investigator is known in the chemical literature or reference database, these “known unknowns” are commonly available now on aggregated internet resources. The identification of these types of compounds in commercial, environmental, forensic, and natural product samples can be identified by searching against these large aggregated databases querying by either elemental composition or monoisotopic mass. Searching by elemental composition is the preferred approach as it is often difficult to determine a unique elemental composition for compounds with molecular weights greater than 600 Da. In these cases, searching by the monoisotopic mass is advantageous. In either case, the search results can be refined by appropriate filtering to identify the compounds. We will report on integrated filtering and search approaches on our aggregated compound database for the purpose of structure identification and review our progress in using the platform for natural product dereplication purposes.


Open innovation and chemistry data management contributions from the Royal Society of Chemistry resulting from the Open PHACTS project at #ACSsanfran

This is my presentation on Thursday 14th August at the ACS Meeting in San Francisco

Open innovation and chemistry data management contributions from the Royal Society of Chemistry resulting from the Open PHACTS project

The Royal Society of Chemistry was pleased to contribute to the Open PHACTS project, a 3 year project funded by the Innovative Medicines Initiative fund from the European Union. For three years we developed our existing platforms, created new and innovative widgets and data platforms to handle chemistry data, extended existing chemistry ontologies and embraced the semantic web open standards. As a result RSC served as the centralized chemistry data hub for the project. With the conclusion of the Open PHACTS project we will report on our experiences resulting from our participation in the project and provide an overview of what tools, capabilities and data have been released into the community as a result of our participation and how this may influence future projects. This will include the Open PHACTS open chemistry data dump including the chemistry related data in chemistry and semantic web consumable formats as well as some of the resulting chemistry software released to the community. The Open PHACTS project resulted in significant contributions to the chemistry community as well as the supporting pharmaceutical companies and biomedical community.


Accessing 3D Printable Chemical Structures Online at #ACSsanfran

This presentation was given by Vincent Scalfani and covers the work we have done to provide access to 3D printable chemical structures online…

Accessing 3D Printable Chemical Structures Online

We have been exploring routes to create 3D printable chemical structure files (.WRL and .STL). These digital 3D files can be generated directly from crystallographic information files (.CIF) using a variety of software packages such as Jmol. After proper conversion to the .STL (or .WRL) file format, the chemical structures can be fabricated into tangible plastic models using 3D printers. This technique can theoretically be used for any molecular or solid structure. Researchers and educators are no longer limited to building models via traditional piecewise plastic model kits. As such, 3D printed molecular models have tremendous value for teaching and research. As the number of available 3D printable structures continues to grow, there is a need for a robust chemical database to store these files. This presentation will discuss our efforts to incorporate 3D printable chemical structures within the Royal Society of Chemistry’s online compound database.



Dealing with the Complex Challenge of Managing Diverse Chemistry Data Online to Enable Chemistry Across the World #ACSsanfran

This is my third presentation today at the ACS meeting in San Francisco on 11th August 2014

Dealing with the Complex Challenge of Managing Diverse Chemistry Data Online to Enable Chemistry Across the World

The Royal Society of Chemistry has provided access to data associated with millions of chemical compounds via our ChemSpider database for over 5 years. During this period the richness and complexity of the data has continued to expand dramatically and the original vision for providing an integrated hub for structure-centric data has been delivered across the world to hundreds of thousands of users. With an intention of expanding the reach to cover more diverse aspects of chemistry-related data including compounds, reactions and analytical data, to name just a few data-types, we are in the process of implementing a new architecture to build a Chemistry Data Repository. The data repository will manage the challenges of associated metadata, the various levels of required security (private, shared and public) and exposing the data as appropriate using semantic web technologies. Ultimately this platform will become the host for all chemicals, reactions and analytical data contained within RSC publications and specifically supplementary information. This presentation will report on how our efforts to manage chemistry related data has impacted chemists and projects across the world and will review specifically our contributions to projects involving natural products for collaborators in Brazil and China, for the Open Source Drug Discovery project in India, and our collaborations with scientists in Russia.



Teaching analytical spectroscopy using online spectroscopic data #ACSsanfran

My first talk of three on August 11th 2014 at the ACS San Francisco meeting

Teaching analytical spectroscopy using online spectroscopic data

The teaching of spectroscopy can be a complex and challenging task. The Royal Society of Chemistry has been developing online resources for a number of years that provide access to analytical data as well as interactive quizzes and challenge sets. The RSC data repository houses over 250,000 spectra at this time including mass spectrometry, NMR and IR data and these are utilized to provide online games to test students capabilities, to underpin the SpectraSchool  training website and to produce source data for students and teachers alike to use in their teaching and self-training efforts. This presentation will provide an overview of RSC resources that can be used to teach spectroscopy using our online data and tools.